FIELDS

SEC 5.1 EXTENSION FIELDS

DEFINITION:

Let F be a field; a field K is said to be an extension of F if K contained $\mathrm{F}(\mathrm{K} \supset \mathrm{F})$.

NOTE:- (1). Kis an extension field of F if Fis a subfield of K.
(2).If K is an extension field of F , it can be treated as vector space over F and dimension of V.Sp. taken as degree of the field.

Definition: The degree of K over F is the dimension of K as a vector space over F , denoted by [K:F].

Definition: If K is a finite dimension vector space over F , then K is a finite extension of F.

THEOREM 5.1.1:-

If L is a f.extn. of K and if K is a f.extn. of F, then L is a f.extn. of F.
Moreover , $[\mathrm{L}: \mathrm{F}]=[\mathrm{L}: \mathrm{K}][\mathrm{K}: \mathrm{F}]$
PROOF:-
Suppose $[\mathrm{L}: \mathrm{K}]=\mathrm{m}$ and $[\mathrm{K}: \mathrm{F}]=\mathrm{n}$.
Let $v_{1}, v_{2}, \ldots, v_{m}$ be a basis of L over K and let $w_{1}, w_{2}, \ldots, w_{n}$ be a basis of K over F .

Consider any element $\mathbf{t} \in \mathbf{L}$, then t can be written as linear combination of basis vectors $v_{1}, v_{2}, \ldots, v_{m}$.
i.e., $\mathrm{t}=k_{1} v_{1}+\cdots+k_{m} v_{m}$, where $\mathrm{k}_{\mathrm{i}} \in \mathrm{K}$

Since K is a vector space over F and $k_{i}{ }^{`} s \in K$,each k_{i} can be written as l.c. of $w_{1}, w_{2}, \ldots, w_{n}$.

$$
\text { i.e., } \begin{align*}
k_{1} & =\alpha_{11} w_{1}+\cdots+\alpha_{1 n} w_{n} \\
k_{2} & =\alpha_{21} w_{1}+\cdots+\alpha_{2 n} w_{n} \tag{4}
\end{align*}
$$

$$
k_{m}=\alpha_{m 1} w_{1}+\cdots+\alpha_{m n} w_{n} ., \text { where } \alpha_{i j} \in F
$$

Substituting these values of k_{i} 's in (3),
$\mathrm{t}=\left(\alpha_{11} w_{1}+\cdots+\alpha_{1 n} w_{n}\right) v_{1}+\ldots+\left(\alpha_{m 1} w_{1}+\cdots+\alpha_{m n} w_{n}\right) v_{m}$.
i.e.,t $=\alpha_{11} v_{1} w_{1}+\cdots+\alpha_{1 n} v_{1} w_{n}+\cdots+\alpha_{m 1} v_{m} w_{1}+\cdots+\alpha_{m n} v_{m} w_{n}$.

Thust is a l.c of elements $v_{i} w_{j}$ over F.So $\boldsymbol{v}_{i} \boldsymbol{w}_{\boldsymbol{j}} \operatorname{Span} \mathbf{L}$ over F.----(A)
Now we can prove $v_{i} w_{j}$ are linearly independent over F .
Suppose $f_{11} v_{1} w_{1}+\cdots+f_{1 n} v_{1} w_{n}+f_{21} v_{2} w_{1}+\cdots+f_{2 n} v_{2} w_{n}$

$$
+\ldots+f_{m 1} v_{m} w_{1}+\cdots+f_{m n} v_{m} w_{n}=0
$$

Claim: Each $\mathrm{f}_{\mathrm{ij}}=0$.,so that the mn elements $\underline{v}_{i} w_{j}$ are linearly independent.
For, regrouping the terms in (5), $k_{1} v_{1}+\cdots+k_{m} v_{m}=0$,
Where $\mathrm{k}_{\mathrm{i}}=f_{i 1} w_{1}+\cdots+f_{\text {in }} w_{n}, \mathrm{i}=1, \ldots, \mathrm{~m}$
\Rightarrow Each $\mathrm{k}_{\mathrm{i}}=0 .\left(\operatorname{since} v_{1}, v_{2}, \ldots, v_{m}\right.$ be a basis of L over K$)$
$\Rightarrow \mathrm{k}_{\mathrm{i}}=f_{i 1} w_{1}+\cdots+f_{\text {in }} w_{n}=0$, for $\mathrm{i}=1, \ldots, \mathrm{~m}$.
$=>$ each $\mathbf{f}_{\mathrm{ij}}=\mathbf{0}$ (since $w_{1}, w_{2}, \ldots, w_{n}$ be a basis of K over F).

So $v_{i} w_{j}$ are linearly independent over \mathbf{F}.---(B)

Thus $v_{i} w_{j}(\mathrm{mn})$ elements form a basis of L over F . (From (A)\& (B))
Thus $\underline{L L: F}]=m n$. Hence L is a f.extn. of $F . / /$
Moreover[L:F] = mn

$$
\text { i.e., }] \text { LL:F] = [L:K][K:F](by eqn(1)// }
$$

Hence the theorem.

COR :1

If L is a f.extn of F and if K is a subfield of L that contains F, then $[\mathrm{K}: \mathrm{F}] \mid[\mathrm{L}: \mathrm{F}]$

PROOF: Suppose L,K,F are fields s.t $\mathrm{L} \supset \mathrm{K} \supset \mathrm{F}$ and $[\mathrm{L}: \mathrm{F}]$ is finite.
Any element in L is linearly independent over K ,are all linearly independent over F.Thus [L:F] is finite $=>[\mathrm{L}: \mathrm{K}]$ is finite. Since K is a subspace of $\mathrm{L},[\mathrm{K}: \mathrm{F}]$ is also finite.

By thm $/[\mathrm{LL}: F]=\mathrm{mn}$, where $[\mathrm{K}: F]=\mathrm{n}$. Thus $n \mid n m$. i.e., $[\mathrm{K}: \mathrm{F}] \mid[\mathrm{L}: \mathrm{F}]$.

Note: If [L:F] is a prime number, then there can be no fields properly between L and F.

DEFINITION: An element $\boldsymbol{a} \in \boldsymbol{K}$ is said to be algebraic over F if there exist elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ in F , not all 0 , such that $\alpha_{0} a^{n}+\alpha_{1} a^{n-1}+\cdots+\alpha_{n}=0$.

Note: 1.Consider the ring of Polynomials in x over F denoted by $\mathrm{F}[\mathrm{x}]$.If $\mathrm{q}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ and $\mathrm{q}(\mathrm{x})=\beta_{0} x^{n}+\beta_{1} x^{n-1}+\cdots+\beta_{n}$, then any element $\mathrm{b} \in \mathrm{K}, \mathrm{q}(\mathrm{b})$ can be written as $\mathrm{q}(\mathrm{b})=\beta_{0} b^{n}+\beta_{1} b^{n-1}+\cdots+\beta_{n} \in K$.
i.e., $q(b)$ is equal to $q(x)$ at $x=b$.
2. In these terms $\underline{\boldsymbol{a} \in \boldsymbol{K}}$ is said to be algebraic over F if there is a nonzero polynomial $p(x) \in F[x]$, so that a satisfies $p(x)$.
i.e., $p(a)=0$.

Definition: Adjoining an element $a \in K$ to F.

Let K be an extension of F and let $\boldsymbol{a} \in \boldsymbol{K}$. Consider the collection $\underline{\boldsymbol{M}}$ of all subfield of K which contain both F and a. Since K itself is a subfield of K , an element of $\underline{\mathscr{M}}$ and so is nonempty. The intersection of all these subfields of K which are members of $\underline{\boldsymbol{M}}$ is a subfield of K. That subfield is denoted by $\mathrm{F}(\mathrm{a})$.

It has the following properties:-
(i). It contains both F and a
(ii). $\mathrm{F}(\mathrm{a})$ is in $\underline{\boldsymbol{M}}$

Thus $\mathrm{F}(\mathrm{a})$ is the smallest subfield of K containing both F and a. So $\mathrm{F}(\mathrm{a})$ called as subfield obtained by adjoining a to \mathbf{F}.

THEOREM 5.1.2 : An element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.

PROOF: Sufficient part:

Consider the elements $1, a, \mathrm{a}^{2}, \ldots, \mathrm{a}^{\mathrm{m}}$; they are all in $\mathrm{F}(\mathrm{a})$ and are $\mathrm{m}+1$ in number, greater than the degree ,they are linearly dependent over F .

Therefore ,there are elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ in F , not all 0 , such that $\alpha_{0} 1+\alpha_{1} a+$ $\cdots+\alpha_{m} a^{m}=0$.
 $\mathrm{p}(\mathrm{x})=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{m} x^{m}$ in $\mathrm{F}[\mathrm{x}]$.

Thus second part proved.//

Conversely, Suppose $\boldsymbol{a} \in \boldsymbol{K}$ is algebraic over \boldsymbol{F}.By the definition ,there exist a nonzero polynomial $p(x)$ in $F[x]$ such that $p(a)=0$.Suppose that $\operatorname{deg} p(x)$ is the smallest one.

Claim: $\mathrm{p}(\mathrm{x})$ is irreducible over F

For, suppose that $p(x)=f(x) \cdot g(x)$, where $f(x), g(x)$ in $F[x] \cdot------(1)$

$$
\text { If } \begin{aligned}
p(a)=0 & \Rightarrow f(a) g(a)=0 \\
& \Rightarrow f(a)=0 \text { or } g(a)=0
\end{aligned}
$$

Also $\operatorname{deg} \mathrm{f}(\mathrm{x}) \geq \operatorname{deg} \mathrm{p}(\mathrm{x})$ (or)

$$
\operatorname{deg} g(x) \geq \operatorname{deg} p(x)-----------(2)(\because \operatorname{deg} p(x) \text { is smallest })
$$

But from eqn/. (1), $\operatorname{deg} p(x)=\operatorname{deg}\{f(x) . g(x)\}$

$$
=\operatorname{deg} f(x)+\operatorname{deg} g(x)-----(3)
$$

From (2) \&(3) we conclude either $\operatorname{deg} f(x)=0$ (or) $\operatorname{deg} g(x)=0$
\Rightarrow Either $\mathrm{f}(\mathrm{x})$ or $\mathrm{g}(\mathrm{x})$ is a constant polynomial.

$\therefore p(x)$ is irreducible over F.

Consider the mapping $\Psi: \mathrm{F}[\mathrm{x}] \rightarrow \mathrm{F}(\mathrm{a})$ defined as $\Psi(\mathrm{h}(\mathrm{x}))=\mathrm{h}(\mathrm{a})$ is a ring homomorphism..

Let V denote the kernel of $\Psi . B y \operatorname{defn} / . V=\{h(x) \in F(x) \mid h(a)=0\}$.
Also $p(x) \in V($ since $p(a)=0)$. Since $p(x)$ is of smallest degree,$h(x)$ in V is a multiple of $\mathrm{p}(\mathrm{x})$.

By division algorithm we can find $q(x), r(x) \in F[x]$, so that $h(x)=q(x) \cdot p(x)+r(x)$, where either $r(x)=0$ or $\operatorname{deg} r(x) \leq \operatorname{deg} p(x)$.

Claim : $\mathrm{r}(\mathrm{x})=0$.
For ,otherwise $r(x)=h(x)-q(x) \cdot p(x)$.

$$
\begin{aligned}
& r(a)=h(a)-q(a) \cdot p(a)=0\{\because h(a)=0, p(a)=0 \\
& \Rightarrow r(x) \in V \text { and } \operatorname{deg} r(x) \leq \operatorname{deg} p(x) \text { is a contradiction. }
\end{aligned}
$$

Thus $\mathrm{r}(\mathrm{x})=0$.
Therefore $h(x)$ is a multiple of $p(x)$.
Since $\mathrm{F}[\mathrm{x}]$ is an Euclidean ring and V consists of all element which are multiple of $\mathrm{p}(\mathrm{x}), \mathrm{V}$ is an ideal of $\mathrm{F}[\mathrm{x}]$, it is also a maximal ideal. $(\because \mathrm{p}(\mathrm{x})$ is irreducible over F$)$.

By general homomorphism on rings,$\frac{F[x]}{V}$ is isomorphic to the image of $\mathrm{F}[\mathrm{x}]$ under Ψ.

The image of $\mathrm{F}[\mathrm{x}]$ under Ψ is a subfield of $\mathrm{F}(\mathrm{a})$ which contains both F and a . But by the defn/. $\mathrm{F}(\mathrm{a})$ is the smallest subfield of K that contains both F and a .
\therefore The image of $\mathrm{F}[\mathrm{x}]$ under Ψ is all of $\mathrm{F}(\mathrm{a})$.
Hence $\frac{\boldsymbol{F}[x]}{\boldsymbol{V}}$ is isomorphic to $\mathbf{F}(\mathbf{a})$ itself. Then $\operatorname{dim} \mathrm{F}\left(\right.$ a) is same as $\operatorname{dim} \frac{F[x]}{V}$.
Since V is generated by $\mathrm{p}(\mathrm{x}), \operatorname{dim} \frac{F[x]}{V}$ is same as $\operatorname{deg} \mathrm{p}(\mathrm{x})$,say n .
$\therefore[\mathrm{F}(\mathrm{a}]: \mathrm{F}]=\operatorname{deg} \mathrm{p}(\mathrm{x})=\mathrm{n}$.
i.e., $F(a)$ is a finite extension of $F . / / .------T H M /$. Proved.

DEFINITION: Algebraic of degree \mathbf{n}.

The element $\boldsymbol{a} \in \boldsymbol{K}$ is said to be algebraic of degree \boldsymbol{n} over F if it satisfies a nonzero polynomial over F of degree n but no nonzero polynomial of lower degree.

THEOREM:5.1.3

If $\underline{\boldsymbol{a} \in \boldsymbol{K}}$ is said to be $\underline{\text { algebraic of degree } \boldsymbol{n} \text { over } \mathrm{F} \text {, then }[\mathrm{F}(\mathrm{a}): \mathrm{F}]=\mathrm{n} \text {. } \mathrm{n} \text {. } \text {. }}$
Proof: Converse part of the theorem 5.1.2.

THEOREM :5.1.4

If $\mathrm{a}, \mathrm{b} \in \mathrm{K}$ are algebraic over F , then $\mathrm{a} \pm \mathrm{b}$, ab and a / b (if $\mathrm{b} \neq 0$) are all algebraic over F. In other words, the elements in K which are algebraic over F , form a subfield of K . PROOF:

Suppose that a is algebraic of degree m over F and b is algebraic of degree n over F , then by theorem $[\mathrm{F}(\mathrm{a}): \mathrm{F}]=\mathrm{m} \&[\mathrm{~F}(\mathrm{~b}): \mathrm{F}]=\mathrm{n}$

Now, let $T=F(a)$ the subfield of K is of degree m over F.
Now b is algebraic of degree n over $\mathrm{F} . \Rightarrow$ that it is algebraic of degree atmost n over over T which contains F . Thus the subfield $\mathrm{W}=\mathrm{T}(\mathrm{b})$ of K is of degree atmost n over T . i.e., $[\mathrm{F}(\mathrm{a}): \mathrm{F}]=\mathrm{m} \&[\mathrm{~T}(\mathrm{~b}): \mathrm{T}] \leq \mathrm{n}$

Now [W:F] = [W:T] [T:F]

$$
\leq \mathrm{nm} .
$$

Thus W is a finite extension of F.
Since $\mathrm{a}, \mathrm{b} \in \mathrm{W}, \mathrm{a} \pm \mathrm{b}, \mathrm{ab}$ and $\mathrm{a} / \mathrm{b} \in \mathrm{W}$. Then by thm/. $\mathrm{a} \pm \mathrm{b}, \mathrm{ab}$ and a / b are all algebraic over F .

Hence the thm//..

Note: Since $[\mathrm{W}: \mathrm{F}] \leq \mathrm{nm}$, every element in W satisfies a polynomial of degree at most mn.

Cor: If $a, b \in K$ are algebraic over F of degree $m \& n$ respectively, then $a \pm b$, $a b$ and a / b are all algebraic over F of degree at most mn.

Notations:

In the thm/. , named two extensions $\mathrm{F}(\mathrm{a})$ as T and $\mathrm{T}(\mathrm{b})$ as W . Thus $\mathrm{W}=(\mathrm{F}(\mathrm{a}))(\mathrm{b})$

$$
=\mathrm{F}(\mathrm{a}, \mathrm{~b})
$$

Similarly $(F(b))(a)=F(b, a)$. Also $F(a, b)=F(b, a)$ for all $a, b \in K$.
Continuing this pattern, we can define $F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for all elements $a_{1}, a_{2}, \ldots, a_{n} \in K$ are algebraic over F .

DEFINITION:-

The extension K of F is called algebraic extension of F if every element in K is algebraic over F .

THEOREM:5.1.5

If L is an algebraic extension of K and if K is an algebraic extension of F then L is an algebraic extension of F .

Proof: Consider an arbitrary element u in L.
Since \boldsymbol{L} is an algebraic extension of \boldsymbol{K},there exist a nonzero polynomial of the form $x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n} x^{0}$, where $\sigma_{1}, \ldots \sigma_{n}$ are in K.
Since K is algebraic extension of F, each σ_{i} is algebraic over F, We have finite extensions $\mathrm{F}\left(\sigma_{1}\right) \quad, \ldots, \mathrm{F}\left(\sigma_{1}, \ldots \sigma_{n}\right)$ by thm/(5.1.3).
Let $\mathrm{M}=\mathrm{F}\left(\sigma_{1}, \ldots \sigma_{n}\right)$ is a finite extension of F , by defn/. $\sigma_{i} \in \mathrm{M}$.
Since u satisfies the polynomial $x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n}$ whose coefficients are in M , u is algebraic over M .

Then $M(u)$ is a finite extension of M. (by thm./.5.1.2)
Therefore by Thm/(5.1.1). [M(u):F] = [M(u):M][M:F],
$\Rightarrow M(u)$ is the finite extension of F.
$\Rightarrow \mathrm{u}$ is algebraic over F . Thus L is algebraic extn/. of F.
Hence the THM//.

Definition: A complex number is said to be an algebraic number if it is algebraic over the field of rational numbers. Otherwise called transcendental.

Problem:1. What is the degree of $\sqrt{2}+\sqrt{3}$ over Q ?
Solution: Let $x=\sqrt{2}+\sqrt{3}$
Squaring on both sides,

$$
\begin{aligned}
& \quad x^{2}=(\sqrt{2}+\sqrt{3})^{2} \\
& \text { i.e., } \quad x^{2}=5+2 \sqrt{2} \sqrt{3} \\
& \text { i.e., } \quad x^{2}-5=2 \sqrt{6}
\end{aligned}
$$

Squaring on both sides,

$$
\begin{gathered}
\left(x^{2}-5\right)^{2}=24 \\
\text { i.e., } x^{4}-10 x^{2}+1=0
\end{gathered}
$$

We have a polynomial of degree $4 . \Rightarrow$ The degree of $\sqrt{2}+\sqrt{3}$ over \mathbf{Q} is $4 . / /$
2. What is the degree of $\sqrt{2} \sqrt{3}$ over Q ? Home Work.

